PrevUpHomeNext

Parsing JSON With Callbacks

This is just like the previous extended JSON parser example, except that it drops all the code that defines a JSON value, array, object, etc. It communicates events within the parse, and the value associated with each event. For instance, when a string is parsed, a callback is called that indicates this, along with the resulting std::string.

#include <boost/parser/parser.hpp>
#include <boost/parser/transcode_view.hpp>

#include <fstream>
#include <vector>
#include <climits>


namespace json {

    namespace bp = ::boost::parser;
    using namespace bp::literals;

    template<typename Iter>
    struct excessive_nesting : std::runtime_error
    {
        excessive_nesting(Iter it) :
            runtime_error("excessive_nesting"), iter(it)
        {}
        Iter iter;
    };


    struct global_state
    {
        int recursive_open_count = 0;
        int max_recursive_open_count = 0;
    };

    struct double_escape_locals
    {
        int first_surrogate = 0;
    };


    bp::rule<class ws> const ws = "whitespace";

    bp::rule<class string_char, uint32_t> const string_char =
        "code point (code points <= U+001F must be escaped)";
    bp::rule<class four_hex_digits, uint32_t> const hex_4 =
        "four hexadecimal digits";
    bp::rule<class escape_seq, uint32_t> const escape_seq =
        "\\uXXXX hexadecimal escape sequence";
    bp::rule<class escape_double_seq, uint32_t, double_escape_locals> const
        escape_double_seq = "\\uXXXX hexadecimal escape sequence";
    bp::rule<class single_escaped_char, uint32_t> const single_escaped_char =
        "'\"', '\\', '/', 'b', 'f', 'n', 'r', or 't'";

    bp::callback_rule<class null_tag> const null = "null";

    // Since we don't create polymorphic values in this parse, we need to be
    // able to report that we parsed a bool, so we need a callback rule for
    // this.
    bp::callback_rule<class bool_tag, bool> const bool_p = "boolean";

    bp::callback_rule<class string_tag, std::string> const string = "string";
    bp::callback_rule<class number_tag, double> const number = "number";

    // object_element is broken up into the key (object_element_key) and the
    // whole thing (object_element).  This was done because the value after
    // the ':' may have many parts.  It may be an array, for example.  This
    // implies that we need to report that we have the string part of the
    // object-element, and that the rest -- the value -- is coming.
    bp::callback_rule<class object_element_key_tag, std::string> const
        object_element_key = "string";
    bp::rule<class object_element_tag> const object_element = "object-element";

    // object gets broken up too, to enable the reporting of the beginning and
    // end of the object when '{' or '}' is parsed, respectively.  The same
    // thing is done for array, below.
    bp::callback_rule<class object_open_tag> const object_open = "'{'";
    bp::callback_rule<class object_close_tag> const object_close = "'}'";
    bp::rule<class object_tag> const object = "object";

    bp::callback_rule<class array_open_tag> const array_open = "'['";
    bp::callback_rule<class array_close_tag> const array_close = "']'";
    bp::rule<class array_tag> const array = "array";

    // value no longer produces an attribute, and it has no callback either.
    // Each individual possible kind of value (string, array, etc.) gets
    // reported separately.
    bp::rule<class value_tag> const value = "value";


    // Since we use these tag types as function parameters in the callbacks,
    // they need to be complete types.
    class null_tag {};
    class bool_tag {};
    class string_tag {};
    class number_tag {};
    class object_element_key_tag {};
    class object_open_tag {};
    class object_close_tag {};
    class array_open_tag {};
    class array_close_tag {};


    auto const ws_def = '\x09'_l | '\x0a' | '\x0d' | '\x20';

    auto first_hex_escape = [](auto & ctx) {
        auto & locals = _locals(ctx);
        uint32_t const cu = _attr(ctx);
        if (!boost::parser::detail::text::high_surrogate(cu))
            _pass(ctx) = false;
        else
            locals.first_surrogate = cu;
    };
    auto second_hex_escape = [](auto & ctx) {
        auto & locals = _locals(ctx);
        uint32_t const cu = _attr(ctx);
        if (!boost::parser::detail::text::low_surrogate(cu)) {
            _pass(ctx) = false;
        } else {
            uint32_t const high_surrogate_min = 0xd800;
            uint32_t const low_surrogate_min = 0xdc00;
            uint32_t const surrogate_offset =
                0x10000 - (high_surrogate_min << 10) - low_surrogate_min;
            uint32_t const first_cu = locals.first_surrogate;
            _val(ctx) = (first_cu << 10) + cu + surrogate_offset;
        }
    };

    bp::parser_interface<bp::uint_parser<uint32_t, 16, 4, 4>> const hex_4_def;

    auto const escape_seq_def = "\\u" > hex_4;

    auto const escape_double_seq_def =
        escape_seq[first_hex_escape] >> escape_seq[second_hex_escape];

    bp::symbols<uint32_t> const single_escaped_char_def = {
        {"\"", 0x0022u},
        {"\\", 0x005cu},
        {"/", 0x002fu},
        {"b", 0x0008u},
        {"f", 0x000cu},
        {"n", 0x000au},
        {"r", 0x000du},
        {"t", 0x0009u}};

    auto const string_char_def = escape_double_seq | escape_seq |
                                 ('\\'_l > single_escaped_char) |
                                 (bp::cp - bp::char_(0x0000u, 0x001fu));

    auto const null_def = "null"_l;

    auto const bool_p_def = bp::bool_;

    auto const string_def = bp::lexeme['"' >> *(string_char - '"') > '"'];

    auto parse_double = [](auto & ctx) {
        auto const cp_range = _attr(ctx);
        auto cp_first = cp_range.begin();
        auto const cp_last = cp_range.end();

        auto const result = bp::prefix_parse(cp_first, cp_last, bp::double_);
        if (result) {
            _val(ctx) = *result;
        } else {
            // This would be more efficient if we used
            // boost::container::small_vector, or std::inplace_vector from
            // C++26.
            std::vector<char> chars(cp_first, cp_last);
            auto const chars_first = &*chars.begin();
            auto chars_last = chars_first + chars.size();
            _val(ctx) = std::strtod(chars_first, &chars_last);
        }
    };

    auto const number_def =
        bp::raw[bp::lexeme
                    [-bp::char_('-') >>
                     (bp::char_('1', '9') >> *bp::digit | bp::char_('0')) >>
                     -(bp::char_('.') >> +bp::digit) >>
                     -(bp::char_("eE") >> -bp::char_("+-") >> +bp::digit)]]
               [parse_double];

    // The object_element_key parser is exactly the same as the string parser.
    // Note that we did *not* use string here, though; we used string_def.  If
    // we had used string, its callback would have been called first, and
    // worse still, since it moves its attribute, the callback for
    // object_element_key would always report the empty string, because the
    // string callback would have consumed it first.
    auto const object_element_key_def = string_def;

    auto const object_element_def = object_element_key > ':' > value;

    // This is a very straightforward way to write object_def when we know we
    // don't care about attribute-generating (non-callback) parsing.  If we
    // wanted to support both modes in one parser definition, we could have
    // written:
    //    auto const object_open_def = eps;
    //    auto const object_close_def = eps;
    //    auto const object_def = '{' >> object_open >>
    //                             -(object_element % ',') >
    //                            '}' >> object_close;
    auto const object_open_def = '{'_l;
    auto const object_close_def = '}'_l;
    auto const object_def = object_open >>
                            -(object_element % ',') > object_close;

    auto const array_open_def = '['_l;
    auto const array_close_def = ']'_l;
    auto const array_def = array_open >> -(value % ',') > array_close;

    auto const value_def = number | bool_p | null | string | array | object;

    BOOST_PARSER_DEFINE_RULES(
        ws,
        hex_4,
        escape_seq,
        escape_double_seq,
        single_escaped_char,
        string_char,
        null,
        bool_p,
        string,
        number,
        object_element_key,
        object_element,
        object_open,
        object_close,
        object,
        array_open,
        array_close,
        array,
        value);

    // The parse function loses its attribute from the return type; now the
    // return type is just bool.
    template<typename Callbacks>
    bool parse(
        std::string_view str,
        std::string_view filename,
        Callbacks const & callbacks,
        int max_recursion = 512)
    {
        auto const range = boost::parser::as_utf32(str);
        using iter_t = decltype(range.begin());

        if (max_recursion <= 0)
            max_recursion = INT_MAX;

        global_state globals{0, max_recursion};
        // This is a different error handler from the json.cpp example, just
        // to show different options.
        bp::stream_error_handler error_handler(filename);
        auto const parser = bp::with_error_handler(
            bp::with_globals(value, globals), error_handler);

        try {
            // This is identical to the parse() call in json.cpp, except that
            // it is callback_parse() instead, and it takes the callbacks
            // parameter.
            return bp::callback_parse(range, parser, ws, callbacks);
        } catch (excessive_nesting<iter_t> const & e) {
            std::string const message = "error: Exceeded maximum number (" +
                                        std::to_string(max_recursion) +
                                        ") of open arrays and/or objects";
            bp::write_formatted_message(
                std::cout,
                filename,
                range.begin(),
                e.iter,
                range.end(),
                message);
        }

        return {};
    }

}

std::string file_slurp(std::ifstream & ifs)
{
    std::string retval;
    while (ifs) {
        char const c = ifs.get();
        retval += c;
    }
    if (!retval.empty() && retval.back() == -1)
        retval.pop_back();
    return retval;
}

// This is our callbacks-struct.  It has a callback for each of the kinds of
// callback rules in our parser.  If one were missing, you'd get a pretty
// nasty template instantiation error.  Note that these are all const members;
// callback_parse() takes the callbacks object by constant reference.
struct json_callbacks
{
    void operator()(json::null_tag) const { std::cout << "JSON null value\n"; }
    void operator()(json::bool_tag, bool b) const
    {
        indent();
        std::cout << "JSON bool " << (b ? "true" : "false") << "\n";
    }
    void operator()(json::string_tag, std::string s) const
    {
        indent();
        std::cout << "JSON string \"" << s << "\"\n";
    }
    void operator()(json::number_tag, double d) const
    {
        indent();
        std::cout << "JSON number " << d << "\n";
    }
    void operator()(json::object_element_key_tag, std::string key) const
    {
        indent();
        std::cout << "JSON object element with key \"" << key
                  << "\" and value...\n";
    }
    void operator()(json::object_open_tag) const
    {
        indent(1);
        std::cout << "Beginning of JSON object.\n";
    }
    void operator()(json::object_close_tag) const
    {
        indent(-1);
        std::cout << "End of JSON object.\n";
    }
    void operator()(json::array_open_tag) const
    {
        indent(1);
        std::cout << "Beginning of JSON array.\n";
    }
    void operator()(json::array_close_tag) const
    {
        indent(-1);
        std::cout << "End of JSON array.\n";
    }

    void indent(int level_bump = 0) const
    {
        if (level_bump < 0)
            indent_.resize(indent_.size() - 2);
        std::cout << indent_;
        if (0 < level_bump)
            indent_ += "  ";
    }
    mutable std::string indent_;
};

int main(int argc, char * argv[])
{
    if (argc < 2) {
        std::cerr << "A filename to parse is required.\n";
        exit(1);
    }

    std::ifstream ifs(argv[1]);
    if (!ifs) {
        std::cerr << "Unable to read file '" << argv[1] << "'.\n";
        exit(1);
    }

    std::string const file_contents = file_slurp(ifs);
    bool success = json::parse(file_contents, argv[1], json_callbacks{});
    if (success) {
        std::cout << "Parse successful!\n";
    } else {
        std::cerr << "Parse failure.\n";
        exit(1);
    }

    return 0;
}

Note that here, I was keeping things simple to stay close to the previous parser. If you want to do callback parsing, you might want that because you're limited in how much memory you can allocate, or because the JSON you're parsing is really huge, and you only need to retain certain parts of it.

If this is the case, one possible change that might be appealing would be to reduce the memory allocations. The only memory allocation that the parser does is the one we told it to do — it allocates std::strings. If we instead used boost::container::small_vector<char, 1024>, it would only ever allocate if it encountered a string larger than 1024 bytes. We would also want to change the callbacks to take const & parameters instead of using pass-by-value.


PrevUpHomeNext